Math 55 Quiz 5 DIS 105

Name: \qquad 7 Mar 2022

1. Let f_{n} be the $n^{\text {th }}$ Fibonacci number. (Recall that these are defined by $f_{1}=1, f_{2}=1$, and $f_{n+2}=f_{n}+f_{n+1}$ for $n \geq 1$.)

Use induction to show that $f_{2}+f_{4}+f_{6}+\ldots+f_{2 n}=f_{2 n+1}-1$ for every $n \geq 1$. [5 points] Let $P(n)$ be the proposition that $f_{2}+f_{4}+f_{6}+\ldots+f_{2 n}=f_{2 n+1}-1$.
For $n=1, f_{2}=1=f_{3}-1$, so $P(1)$ is true.
Suppose $P(n)$ is true for some $n \geq 1$.
Then

$$
\begin{aligned}
f_{2}+f_{4}+f_{6}+\ldots+f_{2 n+2} & =f_{2}+f_{4}+f_{6}+\ldots+f_{2 n}+f_{2 n+2} \\
& =f_{2 n+1}-1+f_{2 n+2} \\
& =\left(f_{2 n+1}+f_{2 n+2}\right)-1 \\
& =f_{2 n+3}-1
\end{aligned}
$$

So $P(n+1)$ is true.
By mathematical induction, $P(n)$ is true for every $n \geq 1$.
2. Find the number of bit strings of length ten that begin with 101 or end with 010. Explain your answer. [5 points]

There are 2^{7} bit strings of length ten that begin with 101 , since each of the final 7 digits can be either 0 or 1 . By the same reasoning, there are 2^{7} bit strings of length ten that end with 010 .
Also, similarly, there are 2^{4} bit strings of length ten that begin with 101 and end with 010 . So the number of bit strings of length ten that begin with 101 or end with 010 is $2^{7}+2^{7}-2^{4}=$ 240.

